A Strictly Geometrical Proof of the Altitude Theorem
The Altitude Theorem or Geometric Mean Theorem is a result from high-school geometry. In a right triangle, the altitude $h$ on the hypotenuse divides the hypotenuse into two segments, $p$ and $q$. The theorem now states that $h^2 = pq$ or, equivalently, $h = \sqrt{pq}$: the altitude equals the geometric mean of the segments of the hypotenuse.
The content of this theorem is a bit surprising, because the altitude and the hypotenuse segments seem geometrically somewhat “unrelated”: it’s not clear how one could (geometrically) be transformed into the other. And although the theorem can be proven in many different ways, many of the proofs are at least partially algebraic, and therefore do not provide an intuitive, geometric sense why it is true. But it turns out that a very elegant, strictly geometric proof of this proposition can be constructed.