A Strictly Geometrical Proof of the Altitude Theorem

The Altitude Theorem or Geometric Mean Theorem is a result from high-school geometry. In a right triangle, the altitude $h$ on the hypotenuse divides the hypotenuse into two segments, $p$ and $q$. The theorem now states that $h^2 = pq$ or, equivalently, $h = \sqrt{pq}$: the altitude equals the geometric mean of the segments of the hypotenuse.

The content of this theorem is a bit surprising, because the altitude and the hypotenuse segments seem geometrically somewhat “unrelated”: it’s not clear how one could (geometrically) be transformed into the other. And although the theorem can be proven in many different ways, many of the proofs are at least partially algebraic, and therefore do not provide an intuitive, geometric sense why it is true. But it turns out that a very elegant, strictly geometric proof of this proposition can be constructed.

Book Review: Two Books on Analytic Number Theory

Analytic number theory is the application of methods from analysis to the study of integers, in particular primes. This may seem paradoxical: at the heart of analysis lie notions of continuity and differentiability — and what could be more discrete and discontinuous than the set of primes?

Euler's Product

Everyone knows Euler’s famous identity, linking the imaginary unit to trigonometric functions:

$$ \mathrm{e}^{\mathrm{i} \pi} = -1 $$

But another remarkable identity is also due to Euler, this one linking the set of prime numbers to an analytical function:

Book Reviews: Three Books on Linear Algebra

Linear Algebra is one of the foundational topics for all applied mathematics. But compared to Analysis, it initially often feels stranger and less familiar. Although technically not hard, the level of abstraction is higher, making it hard to see what all the formalism is supposed to achieve.